Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-2207777

ABSTRACT

Objective To investigate the effect of nasal irrigation on the duration of symptoms and nucleic acid conversion in adults infected with the Omicron variant of COVID-19. Methods This quasi-experimental study enrolled patients diagnosed with asymptomatic, mild, or moderate Omicron infection at the Shandong Public Health Clinical Center between April 1, 2022 and May 1, 2022. Patients were divided into two groups to receive Lianhua Qingwen granules and traditional Chinese medicine (TCM) prescriptions (conventional group) and 3% hypertonic saline nasal irrigation based on conventional treatment (nasal irrigation groups), respectively. Primary outcomes were symptom disappearance time and nucleic acid negative conversion time. Secondary outcomes were peripheral blood white blood cell (WBC), lymphocyte (LYM) count, neutrophil (NEU) count, C-reactive protein (CRP) level, and chest CT examination findings. Results Eighty patients were included (40 patients/group). Multiple linear regression analysis showed that, after adjustment for comorbidities, smoking history, LYM count, and Ct values of N gene, the patients in the nasal irrigation group were more likely to get lower nucleic acid negative conversion time (β = −11.052, 95% CI: −8.277–13.827, P < 0.001) compared with the conventional group. The symptom disappearance time showed no significant improvement (P > 0.05). Subgroup analysis for treatment-naïve patients in the nasal irrigation group showed similar nucleic acid negative conversion time improvement (P = 0.038). Conclusion Early nasal irrigation shortens the nucleic acid negative conversion time in adults infected with the Omicron variant but without improvements in symptom disappearance time.

3.
Hum Reprod ; 37(12): 2942-2951, 2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2051406

ABSTRACT

STUDY QUESTION: Does inoculation with inactivated vaccines against coronavirus disease 2019 (Covid-19) before frozen-thawed embryo transfer (FET) affect live birth and neonatal outcomes? SUMMARY ANSWER: Inactivated Covid-19 vaccines did not undermine live birth and neonatal outcomes of women planning for FET. WHAT IS KNOWN ALREADY: Accumulating reports are now available indicating the safe use of mRNA vaccines against Covid-19 in pregnant and lactating women, and a few reports indicate that they are not associated with adverse effects on ovarian stimulation or early pregnancy outcomes following IVF. Evidence about the safety of inactivated Covid-19 vaccines is very limited. STUDY DESIGN, SIZE, DURATION: This is a retrospective cohort analysis from Reproductive Medical Center of a tertiary teaching hospital. Clinical records and vaccination record of 2574 couples with embryos transferred between 1 March 2021 and 30 September 2021 were screened for eligibility of this study. PARTICIPANTS/MATERIALS, SETTING, METHODS: Clinical and vaccination data of infertile couples planning for FET were screened for eligibility of the study. The reproductive and neonatal outcomes of FET women inoculated with inactivated Covid-19 vaccines or not were compared. The primary outcomes were live birth rate per embryo transfer cycle and newborns' birth height and weight. Secondary outcomes included rates of ongoing pregnancy, clinical pregnancy, biochemical pregnancy and spontaneous miscarriage. Multivariate logistical regression and propensity score matching (PSM) analyses were performed to minimize the influence of confounding factors. Subgroup analyses, including single dose versus double dose of the vaccines and the time intervals between the first vaccination and embryo transfer, were also performed. MAIN RESULTS AND THE ROLE OF CHANCE: Vaccinated women have comparable live birth rates (43.6% versus 45.0% before PSM, P = 0.590; and 42.9% versus 43.9% after PSM, P = 0.688), ongoing pregnancy rates (48.2% versus 48.1% before PSM, P = 0.980; and 52.2% versus 52.7% after PSM, P = 0.875) and clinical pregnancy rate (55.0% versus 54.8% before PSM, P = 0.928; and 54.7% versus 54.2% after PSM, P = 0.868) when compared with unvaccinated counterparts. The newborns' birth length (50.0 ± 1.6 versus 49.0 ± 2.9 cm before PSM, P = 0.116; and 49.9 ± 1.7 versus 49.3 ± 2.6 cm after PSM, P = 0.141) and birth weight (3111.2 ± 349.9 versus 3030.3 ± 588.5 g before PSM, P = 0.544; and 3053.8 ± 372.5 versus 3039.2 ± 496.8 g after PSM, P = 0.347) were all similar between the two groups. Neither single dose nor double dose of vaccines, as well as different intervals between vaccination and embryo transfer showed any significant impacts on reproductive and neonatal outcomes. LIMITATIONS, REASONS FOR CAUTION: The main findings might be limited by retrospective design. Besides, inoculations of triple dose of Covid-19 vaccines were not available by the time of data collection, thus the results cannot reflect the safe use of triple dose of inactivated Covid-19 vaccines. Finally, history of Covid-19 infection was based on patients' self-report rather than objective laboratory tests. WIDER IMPLICATIONS OF THE FINDINGS: Eligible individuals of inactivated vaccines against Covid-19 should not postpone vaccination plan because of their embryo transfer schedule, or vice versa. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the Medical Key Discipline of Guangzhou (2021-2023). All authors had nothing to disclose. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
COVID-19 , Live Birth , Pregnancy , Humans , Infant, Newborn , Female , COVID-19 Vaccines/adverse effects , Retrospective Studies , COVID-19/prevention & control , Lactation , Embryo Transfer/methods , Pregnancy Rate , Birth Rate , Vaccines, Inactivated , Fertilization in Vitro/methods
4.
Front Public Health ; 10: 966826, 2022.
Article in English | MEDLINE | ID: covidwho-2043536

ABSTRACT

Background: Vaccine hesitancy was found in couples seeking artificial reproductive technology (ART) services. As the main vaccine used in China, investigations into the influence of inactivated coronavirus disease 2019 (COVID-19) vaccines on human fertility is needed. Methods: This retrospective cohort study included data on COVID-19 vaccination, clinical characteristics, and reproductive outcome of 1,000 intrauterine insemination (IUI) cycles in 653 couples from March 2021 to March 2022 in a single university hospital-based center for reproductive medicine. The IUI cycles were divided into two categories based on sperm source, including 725 cycles in 492 women undergoing artificial insemination with their husband's sperm (AIH) and 275 cycles in 161 women undergoing artificial insemination with donor sperm (AID). Women were then divided into two groups. The vaccine exposed group included women vaccinated prior to insemination and the unexposed group included women who were not vaccinated or vaccinated after insemination. Reproductive outcomes including ongoing pregnancy rate, clinical pregnancy rate, and miscarriage rate were assessed. Results: Inactivated COVID-19 vaccinated women prior to intrauterine insemination in AIH cycles have comparable ongoing pregnancy rate (11.1 vs. 10.3%, P = 0.73), clinical pregnancy rate (12.5 vs. 11.3%, P = 0.60) as compared with unvaccinated counterparts. Similarly, there were no significant differences in ongoing pregnancy rate (20.9 vs. 28.1%, P = 0.17), clinical pregnancy rate (21.7 vs. 28.8%, P = 0.19) between vaccine exposed and unexposed groups in AID cycles. Multivariable logistic regression analyses showed that inactivated COVID-19 vaccination status cannot independently influence the reproductive outcomes of AIH and AID cycles. Subgroup analysis of vaccine exposed cycles showed that doses of vaccination and Interval between the last dose of vaccination and insemination have no influence on the reproductive outcomes of AIH cycles. Conclusions: No negative effects were found on female fertility in IUI cycles following exposure to the inactivated COVID-19 vaccine. These findings indirectly reflect the safety of inactivated COVID-19 vaccine toward reproductive health and help to mitigate vaccine hesitancy among people planning to conceive.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , Female , Humans , Insemination , Male , Pregnancy , Retrospective Studies , Semen , Vaccination
5.
Hum Reprod ; 37(9): 2054-2062, 2022 08 25.
Article in English | MEDLINE | ID: covidwho-1961049

ABSTRACT

STUDY QUESTION: Do inactivated coronavirus disease-2019 (COVID-19) vaccines affect IVF outcomes among the vaccine recipients? SUMMARY ANSWER: The receipt of inactivated COVID-19 vaccines before ovarian stimulation has little effect on the outcomes of IVF, including ovarian stimulation outcomes, embryo development and pregnancy rates. WHAT IS KNOWN ALREADY: Limited studies have reported that COVID-19 vaccines do not affect ovarian function, embryo development or pregnancy outcomes. STUDY DESIGN, SIZE, DURATION: This was a retrospective cohort study performed at the Third Affiliated Hospital of Guangzhou Medical University on 240 women vaccinated with either CoronaVac or Sinopharm COVID-19 before ovarian stimulation in the exposed group and 1343 unvaccinated women before ovarian stimulation in the unexposed group. All participants received fresh embryo transfers between 1 March 2021 and 15 September 2021. The included women were followed up until 12 weeks of gestation. PARTICIPANTS/MATERIALS, SETTING, METHODS: Vaccination information of all subjects was followed up by a nurse, and the IVF data were obtained from the IVF data system. The following aspects were compared between the vaccinated and the unvaccinated groups: parameters of ovarian stimulation, embryo development and pregnancy rates. Regression analyses were performed to control for confounders of embryo development and pregnancy rates. Propensity score matching (PSM) was performed to balance the baseline parameters of the two groups. The primary outcome was the ongoing pregnancy rate. MAIN RESULTS AND THE ROLE OF CHANCE: Liner regression analysis revealed that the number of oocytes retrieved (regression coefficient (B) = -0.299, P = 0.264), embryos suitable for transfer (B = -0.203, P = 0.127) and blastocysts (B = -0.250, P = 0.105) were not associated with the status of vaccination before ovarian stimulation, after adjusting for the confounders. The ongoing pregnancy rate in the women of the vaccinated group was not significantly lower than that in the unvaccinated group (36.3% vs 40.7%, P = 0.199) (adjust odd ratio = 0.91, 95% CI = 0.68-1.22, P = 0.52). After PSM, the rates of ongoing pregnancy (36.0% vs 39.9%, P = 0.272), implantation (35.4% vs 38.3%, P = 0.325), biochemical pregnancy (47.3% vs 51.6%, P = 0.232), clinical pregnancy (44.4% vs 47.4%, P = 0.398) and early miscarriage (15.0% vs 12.1%, P = 0.399) were not significantly different between the vaccinated and the unvaccinated groups. LIMITATIONS, REASONS FOR CAUTION: This is a retrospective study of women with infertility. The results from the present study warrant confirmation by prospective studies with a larger cohort. WIDER IMPLICATIONS OF THE FINDINGS: This is the first study with a large sample size on the effect of inactivated COVID-19 vaccines on ongoing pregnancy rates of women undergoing IVF. The present results showed that vaccination has no detrimental effect on IVF outcomes. Therefore, women are recommended to receive COVID-19 vaccines before undergoing their IVF treatment. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Key Research and Development Program of China (No. 2018YFC1003803 to J.L.), the Guangzhou Science and Technology Plan Project (No. 202102010076 to H.L.) and the Medical Key Discipline of Guangzhou (2021-2023), as well as the Sino-German Center for Research Promotion Rapid Response Funding Call for Bilateral Collaborative Proposals between China and Germany in COVID-19 Related Research (No. C-0032 to Xingfei Pan). The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , Female , Fertilization in Vitro/methods , Humans , Ovulation Induction/methods , Pregnancy , Pregnancy Rate , Prospective Studies , Retrospective Studies , Vaccination
6.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1496533.v1

ABSTRACT

Background The lack of interaction in pharmacology courses, especially in terms of the Coronavirus Disease 2019 (COVID-19) pandemic, has required a fast shift to remote learning at medical schools, causing students to feel anxious and isolated. As a result, new interactive teaching approaches are required to improve pharmacology learning attention and interaction in traditional classrooms or remoting education.Methods: We introduced the bullet screen into pharmacology teaching. Then, a survey was distributed to first-, second- and third-year pre-clinical undergraduate medical and nursing students at the Shanghai Jiaotong University School of Medicine from November 2020 to March 2022. We evaluated the essential features, instructional effectiveness, and recreational value of bullet screens. Responses to structured and open-ended questions about strengths and weaknesses of the bullet screen and overall reflections were coded and compared between medical and nursing students.Results: For the essential features, bullet screen has a high degree of acceptability among students, and this novel instructional style conveniently increased the classroom interaction. For instructional effectiveness, bullet screen might inspire students’ in-depth thinking. Meanwhile, students tended to consider bullet-screen comments as a way to express their support rather than to make additional comments or to express their opposition. For the recreational value, the process of using bullet screen was interesting. The lack of idea might lead to the relative differences between medical and nursing students, indicating that guiding the appropriate use of bullet screen is necessary.Conclusions: The bullet screen may be popularized as an auxiliary teaching approach to promote interaction between teachers and students in the curriculum as well as remote education. It's interesting and beneficial in pharmacology courses, yet there are several aspects that might be improved for popularization.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL